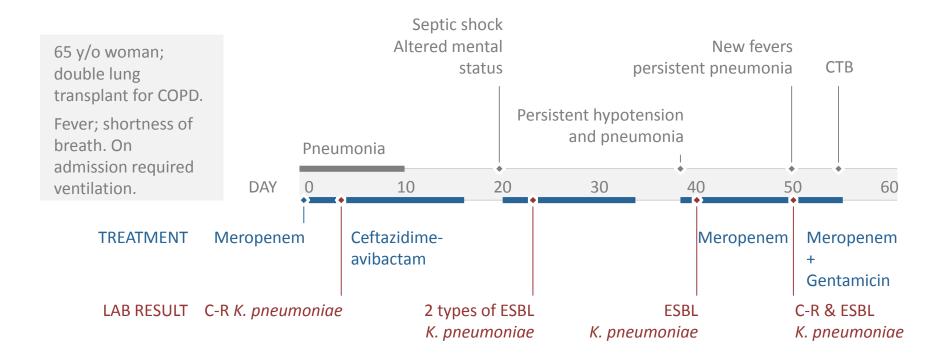
One Health and the control and prevention of antimicrobial resistance: Perspectives from human medicine

### Cornelius J. Clancy, M.D.

Chief, Infectious Diseases VA Pittsburgh Healthcare System Director, XDR Pathogen Lab and Mycology Research Unit University of Pittsburgh

One Health, One Planet 2019 Phipps Conservatory and Botanical Gardens Pittsburgh, PA 14 March 2019












## An illustrative case, 2019



## The rise of CRE\* superbugs

### **MBC NEWS**

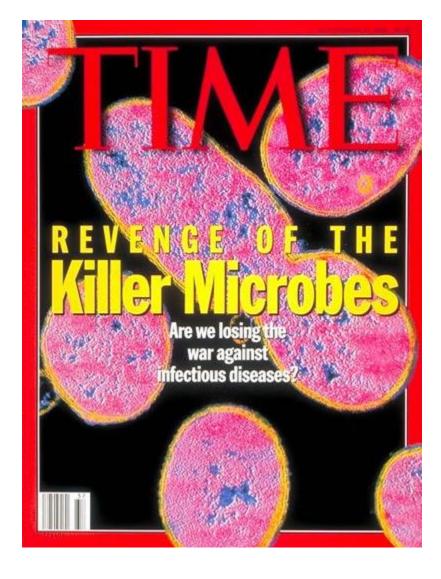
HEALTH MAR 5, 2015, 12:27 AM ET

## Two More Hospitals Report 'Superbugs' on Endoscopes

### By MAGGIE FOX



Hospitals Plagued by Unbeatable 'Superbugs'


Nov 29, 2012 11:11 AM CST

#### Hospitals Plagued by Unbeatable 'Superbugs'

'USA TODAY' FINDS THOUSANDS OF CASES IN RECENT YEARS

(NEWSER) - US hospitals are quietly fighting an incredibly high stakes war that they look unlikely to win against "superbugs" that resist even the most potent antibiotics available, a USA Today investigation has concluded. The paper has compiled evidence showing that hospitals across the country have seen thousands of infections from... More »





### \*Carbapenem Resistant Enterobacteriaceae

## The rise of CRE\* superbugs

### **MBC NEWS**

HEALTH MAR 5, 2015, 12:27 AM ET

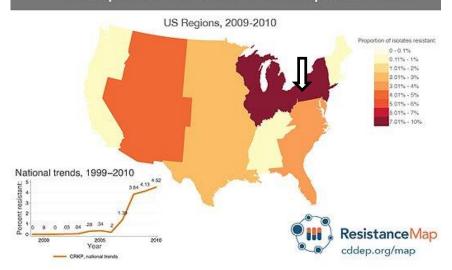
### Two More Hospitals Report 'Superbugs' on Endoscopes

### By MAGGIE FOX



Hospitals Plagued by Unbeatable 'Superbugs'

Nov 29, 2012 11:11 AM CST


#### Hospitals Plagued by Unbeatable 'Superbugs'

'USA TODAY' FINDS THOUSANDS OF CASES IN RECENT YEARS

(NEWSER) - US hospitals are quietly fighting an incredibly high stakes war that they look unlikely to win against "superbugs" that resist even the most potent antibiotics available, a USA Today investigation has concluded. The paper has compiled evidence showing that hospitals across the country have seen thousands of infections from... More »



#### Carbapenem-resistant Klebsiella pneumoniae



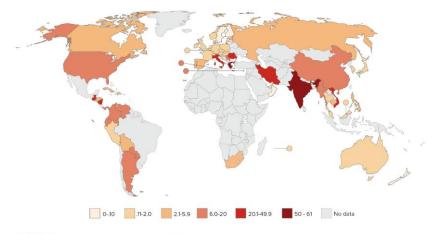



FIGURE 1-3: Percentage of carbapenem-resistant Klebsiella pneumoniae, by country (most recent year, 2011–2014) Source: CDDEP 2015, WHO 2014 and PAHO, forthcoming

### \*Carbapenem Resistant Enterobacteriaceae

## The rise of CRE\* superbugs

### **MBC NEWS**

HEALTH MAR 5, 2015, 12:27 AM ET

## Two More Hospitals Report 'Superbugs' on Endoscopes

### By MAGGIE FOX

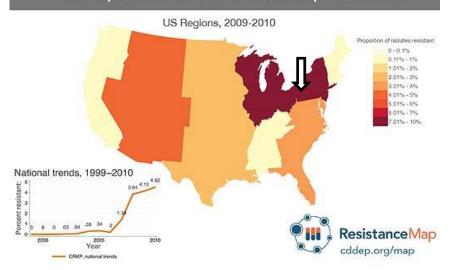


Hospitals Plagued by Unbeatable 'Superbugs'

Nov 29, 2012 11:11 AM CST

#### Hospitals Plagued by Unbeatable 'Superbugs'

'USA TODAY' FINDS THOUSANDS OF CASES IN RECENT YEARS


(NEWSER) - US hospitals are quietly fighting an incredibly high stakes war that they look unlikely to win against "superbugs" that resist even the most potent antibiotics available, a USA Today investigation has concluded. The paper has compiled evidence showing that hospitals across the country have seen thousands of infections from... More »

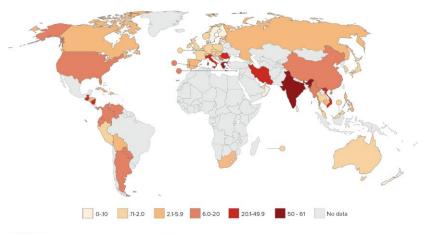
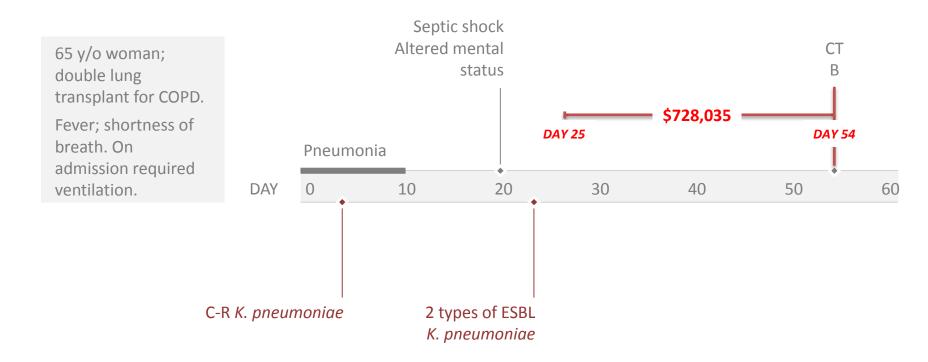


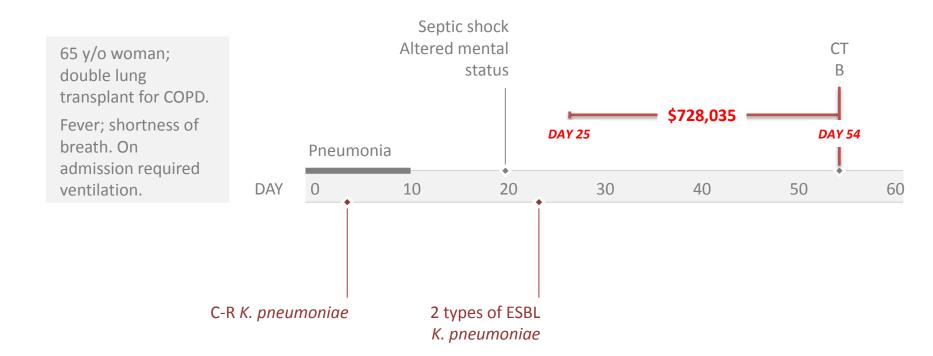
### 10 million deaths due to drug-resistant infections per year in 2050

Review on Antimicrobial Resistance, Wellcome Trust and UK Department of Health

#### Carbapenem-resistant Klebsiella pneumoniae



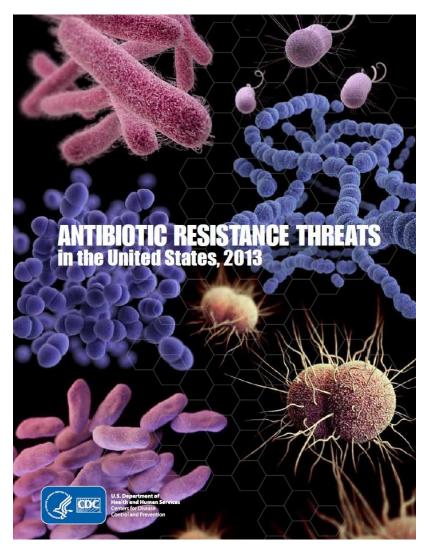





FIGURE 1-3: Percentage of carbapenem-resistant Klebsiella pneumoniae, by country (most recent year, 2011–2014) Source: CDDEP 2015, WHO 2014 and PAHO, forthcoming

### \*Carbapenem Resistant Enterobacteriaceae

## An illustrative case, 2019




## An illustrative case, 2019



### Lost global production due to antimicrobial resistance 2016-2050: \$100 trillion

Review on Antimicrobial Resistance, Wellcome Trust and UK Department of Health

## Antibiotic resistance threats



#### table.2

### **Urgent Threats**

Clostridium difficile Carbapenem-resistant Enterobacteriaceae Neisseria gonorrhoeae

### **Serious Threats**

Multidrug-resistant Acinetobacter Drug-resistant Campylobacter Fluconazole-resistant Candida Extended spectrum Enterobacteriaceae Vancomycin-resistant Enterococcus Multidrug-resistant Pseudomonas aeruginosa Drug-resistant nontyphoidal Salmonella Drug-resistant Salmonella serotype Typhi Drug-resistant Shigella Methicillin-resistant Staphylococcus aureus Drug-resistant Streptococcus pneumoniae Drug-resistant tuberculosis

### **Concerning Threats**

Vancomycin-resistant *Staphylococcus aureus* Erythromycin-resistant Group A *Streptococcus* Clindamycin-resistant Group B *Streptococcus* 

Table 2. US Centers for Disease Control and Prevention list of the greatest drug-resistant microbial threats in the United States.<sup>6</sup>

CDC: Antibiotic Resistance Threats in the US, 2013 (http://www.cdc.gov/drugresistance/threat-report-2013/index.html)

### History of penicillin resistance



"... the thoughtless person playing with penicillin is morally responsible for the death of the man who finally succumbs to infection with the penicillin-resistant organism." 26 June, 1945

### "Surveys of hospitals have found that practices to improve antimicrobial use are frequently inadequate and not routinely implemented"

Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship

Timothy H. Dellit,<sup>1</sup> Robert C. Owens,<sup>2</sup> John E. McGowan, Jr.,<sup>3</sup> Dale N. Gerding,<sup>4</sup> Robert A. Weinstein,<sup>5</sup> John P. Burke,<sup>6</sup> W. Charles Huskins,<sup>7</sup> David L. Paterson,<sup>8</sup> Neil O. Fishman,<sup>9</sup> Christopher F. Carpenter,<sup>10</sup> P. J. Brennan,<sup>3</sup> Marianne Billeter,<sup>11</sup> and Thomas M. Hooton<sup>12</sup>

<sup>1</sup>Harboview Medical Center and the University of Washington, Seattle; <sup>3</sup>Maine Medical Center, Portland; <sup>3</sup>Emory University, Atlanta, Georgia; <sup>1</sup>Hines Veterans Affairs Hospital and Loyola University Stricth School of Medicine, Hines, and <sup>3</sup>Stroger (Dock County) Hospital and Rush University Medical Center, Chicago, Illinois; <sup>4</sup>University of Utah, Salt Lake City, <sup>3</sup>Mayo Clinic College of Medicine, Rochester, Minnesota; <sup>1</sup>University of Hitsburgh Medical Center, Pittsburgh, and <sup>4</sup>University of Ponnsylvenia; Philadelphia, Pennsylvania; <sup>14</sup>William Beaumont Hospital, Royal Oak, Michigar; <sup>10</sup>Othsrer Health System, New Orleans, Louisiane; and <sup>4</sup>University of Miami, Miami, Miami, Florida

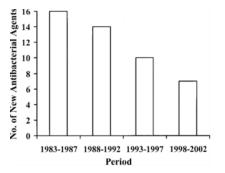
Clin Infect Dis 2007; 44:159-77

### "Surveys of hospitals have found that practices to improve antimicrobial use are frequently inadequate and not routinely implemented"

Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America Guidelines for Developing an Institutional Program to Enhance Antimicrobial Stewardship

#### Timothy H. Dellit,<sup>1</sup> Robert C. Owens,<sup>2</sup> John E. McGowan, Jr.,<sup>3</sup> Dale N. Gerding,<sup>4</sup> Robert A. Weinstein,<sup>5</sup> John P. Burke,<sup>6</sup> W. Charles Huskins,<sup>7</sup> David L. Paterson,<sup>8</sup> Neil O. Fishman,<sup>9</sup> Christopher F. Carpenter,<sup>10</sup> P. J. Brennan,<sup>3</sup> Marianne Billeter,<sup>11</sup> and Thomas M. Hooton<sup>12</sup>

<sup>1</sup>Harborview Medical Center and the University of Washington, Seattle; <sup>3</sup>Maine Medical Center, Portland; <sup>3</sup>Emory University, Atlanta, Georgia; <sup>1</sup>Hines Veterans Affairs Hospital and Loyola University Stritch School of Medicine, Hines, and <sup>3</sup>Stroger (Cook Countyl Hospital and Rush University Medical Center, Chicago, Illinois; <sup>9</sup>University of Utah, Salt Lake City, <sup>1</sup>Mayo Clinic College of Medicine, Rochester, Minnesota; <sup>1</sup>University of Pittsburgh Medical Center, Pittsburgh, and <sup>9</sup>University of Pennsylvania, <sup>1</sup>Piuliam Beaumont Hospital, Royal Oak, Michigar, <sup>11</sup>Octsner Health System, New Orleans, Louisiane, and <sup>9</sup>University of Minim, Miami, Miorid


Clin Infect Dis 2007; 44:159-77

MAJOR ARTICLE

### Trends in Antimicrobial Drug Development: Implications for the Future

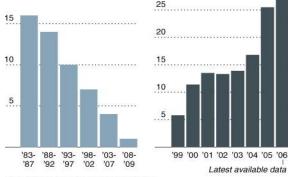
#### Brad Spellberg,<sup>1</sup> John H. Powers,<sup>3</sup> Eric P. Brass,<sup>12</sup> Loren G. Miller,<sup>12</sup> and John E. Edwards, Jr.<sup>12</sup>

'Research and Education Institute and Department of Medicine, Harbor–University of California, Los Angeles (UCLA), Medical Center, Torrance, and 'David Geffen School of Medicine, UCLA, Los Angeles, Californiar, and 'Office of Drug Evaluation IV, Center for Drug Evaluation and Research, US Food and Drug Administration, Rockville, Maryand



#### Dearth of New Drugs ... ...

The number of new antibiotics approved for sale in the United States has dwindled.


... For Hardier Germs

Acinetobacter germs in U.S. hospitals that are resistant to a powerful antibiotic often used as a last line of treatment.

30% Acinetobacter germs

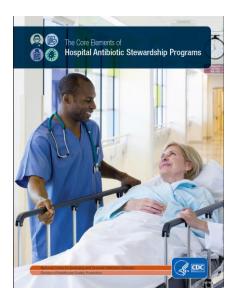
resistant to impenem

20 antibiotics approved for sale

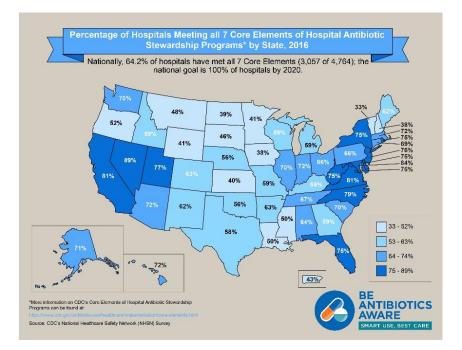


Sources: Infectious Diseases Society of America; Resources for the Future

THE NEW YORK TIMES

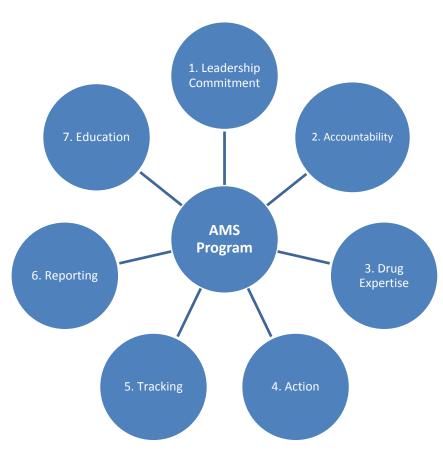

### Mandates for Antimicrobial Stewardship (AMS)





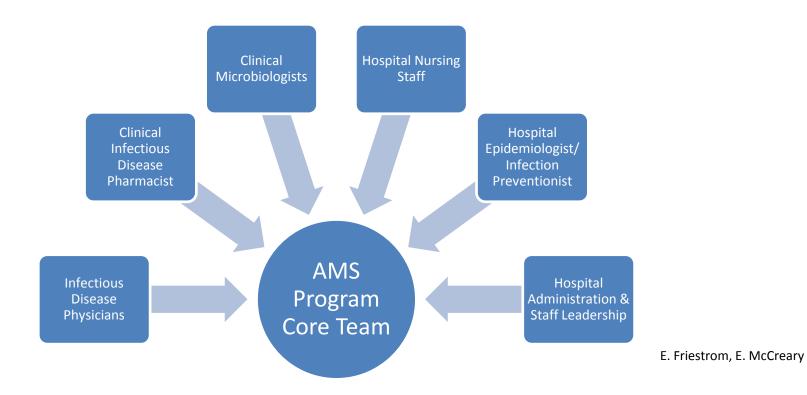



CENTERS FOR DISEASE CONTROL AND PREVENTION




CDC Core Elements of AMS Hospitals Nursing homes Outpatient




## Core elements of AMS programs

- Leadership commitment
  - Human, financial, IT resources
- Accountability
  - Single leader (M.D.) responsible for program outcomes
- Drug expertise
  - Single leader (Pharmacist) responsible for improved antibiotic use
- Action
  - Implementing at least one recommended action
- Tracking
  - Monitoring prescribing and resistance
- Reporting
  - Regular reporting on antibiotic use and resistance
- Education
  - Optimal prescribing and resistance



E. Friestrom, E. McCreary

## Core AMS team

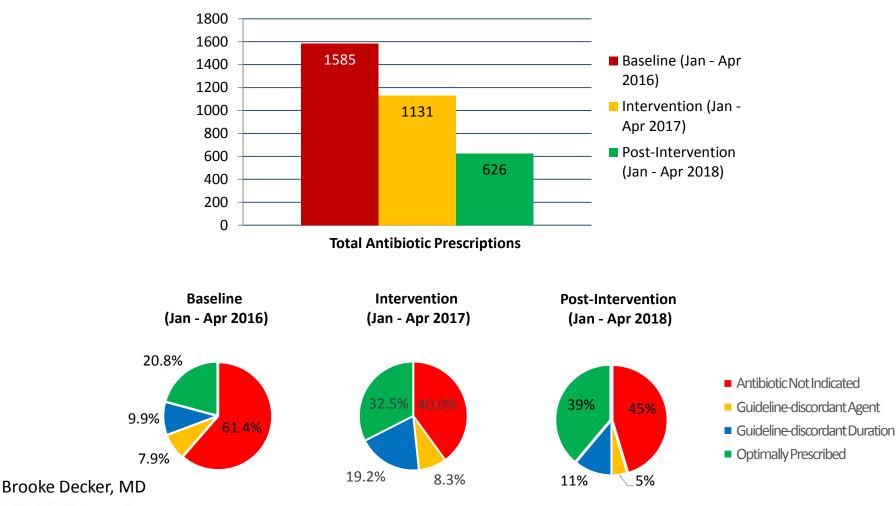


"There is no single template for a program to optimize antibiotic prescribing"



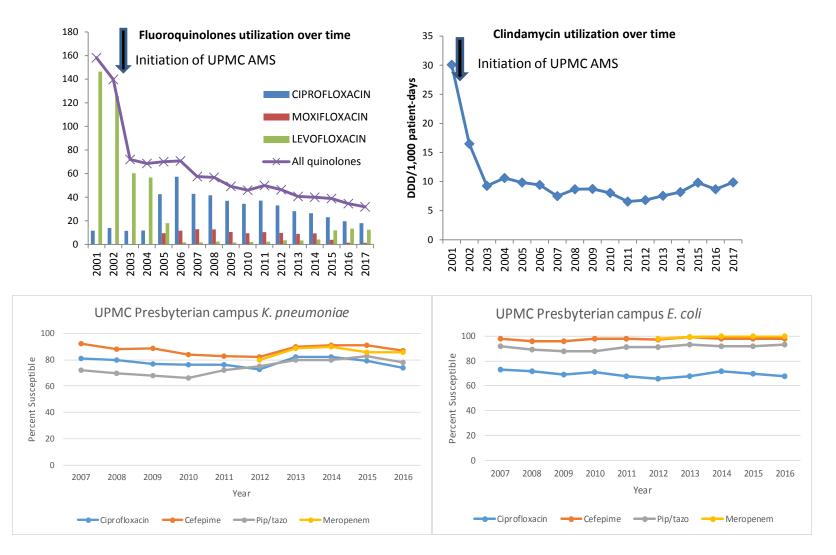
## Does AMS work?

J Antimicrob Chemother 2011; **66**: 1223–1230 doi:10.1093/jac/dkr137 Advance Access publication 2 April 2011 Journal of Antimicrobial Chemotherapy

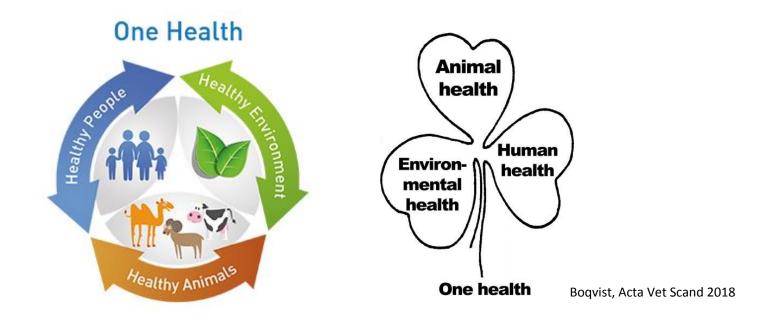

### Impact of antimicrobial stewardship in critical care: a systematic review

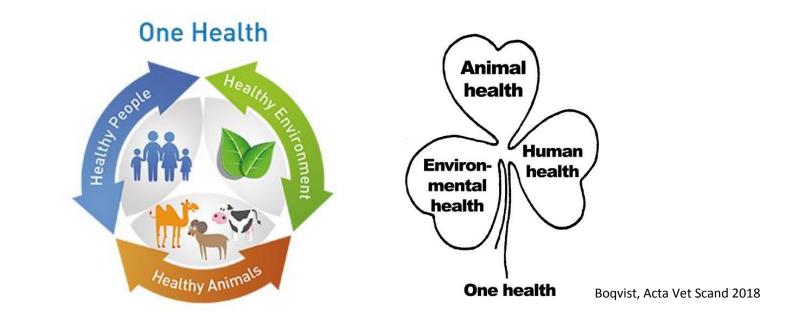
Reham Kaki<sup>1</sup>, Marion Elligsen<sup>2</sup>, Sandra Walker<sup>2–4</sup>, Andrew Simor<sup>1,4</sup>, Lesley Palmay<sup>2</sup> and Nick Daneman<sup>1,4\*</sup>

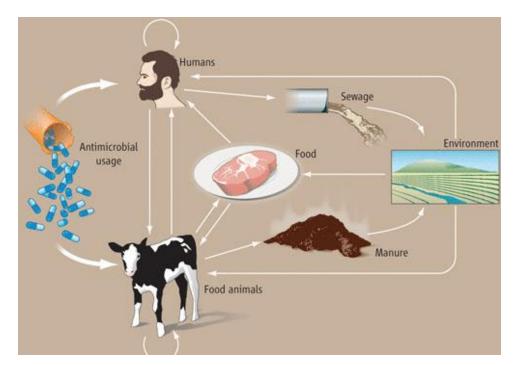
<sup>1</sup>Department of Medicine, University of Toronto, Toronto, Ontario, Canada; <sup>2</sup>Department of Pharmacy, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; <sup>3</sup>Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; <sup>4</sup>Division of Infectious Diseases, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada


- 38 studies, 6 AMS intervention types
- Reduced utilization (11%-38%), lowered costs (US\$5-10/patient-day), shortened duration of treatment, reduced inappropriate use and adverse events/toxicity
- Not associated with increased nosocomial infection rates, lengths of stay, or mortality
- Interventions beyond >6 mos were associated with reduced resistance

## AMS: Still a lot of work to do





## AMS: Still a lot of work to do



M. Hong Nguyen, MD








### **Antibiotic Resistance in Humans and Animals**

A National Academy of Medicine Perspective



"Antimicrobials for livestock account for 80% of the antimicrobials purchased in the United States. To pretend that we can address antibiotic resistance that results from antimicrobial use by focusing on the 20% that occurs in humans and ignoring the 80% that occurs in animals is to fail as a society. We have a crisis of antibiotic resistance."

McEwen, Microbiol Spectrum 2018

## One Health AMR Case Study 1: Colistin



### **Health**

Antibiotic resistance: World on cusp of 'post-antibiotic era'

By James GallagherHealth editor, BBC News website 19 November 2015

## One Health AMR Case Study 1: Colistin



### **Health**

Antibiotic resistance: World on cusp of 'post-antibiotic era'

By James GallagherHealth editor, BBC News website 19 November 2015

Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study

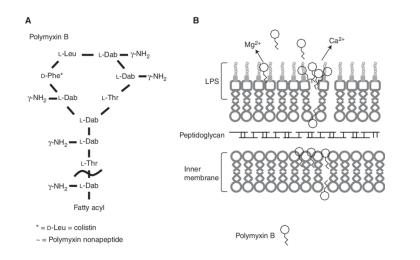
Yi-Yun Liu\*, Yang Wang\*, Timothy R Walsh, Ling-Xian Yi, Rong Zhang, James Spencer, Yohei Doi, Guobao Tian, Baolei Dong, Xianhui Huang, Lin-Feng Yu, Danxia Gu, Hongwei Ren, Xiaojie Chen, Luchao Lv, Dandan He, Hongwei Zhou, Zisen Liang, Jian-Hua Liu, Jianzhong Shen Lancet Infect Dis 2016; 16: 161–68

Published Online November 18, 2015 http://dx.doi.org/10.1016/ S1473-3099(15)00424-7

Louis D. Saravolatz, Section Editor

### Colistin: The Revival of Polymyxins for the Management of Multidrug-Resistant Gram-Negative Bacterial Infections

#### Matthew E. Falagas<sup>1,2,3</sup> and Sofia K. Kasiakou<sup>1</sup>


<sup>1</sup>Alfa Institute of Biomedical Sciences (AIBS) and <sup>2</sup>Department of Medicine, "Henry Dunant" Hospital, Athens, Greece; and <sup>3</sup>Tufts University School of Medicine, Boston, Massachusetts

Louis D. Saravolatz, Section Editor

### Colistin: The Revival of Polymyxins for the Management of Multidrug-Resistant Gram-Negative Bacterial Infections

#### Matthew E. Falagas<sup>1,2,3</sup> and Sofia K. Kasiakou<sup>1</sup>

<sup>1</sup>Alfa Institute of Biomedical Sciences (AIBS) and <sup>2</sup>Department of Medicine, "Henry Dunant" Hospital, Athens, Greece; and <sup>3</sup>Tufts University School of Medicine, Boston, Massachusetts



- China, Brazil, Europe (certain countries)
  - Administered orally to pigs, poultry, calves for treatment, prophylaxis, metaphylaxis of diarrhea, <u>and/or</u> as growth promoter
  - Vastly exceeds use in humans (12,000 tonnes in China)
- Phenotypic resistance testing is technically difficult
  - Not included in routine surveillance of animals, environment, food, humans

### Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study

Yi-Yun Liu\*, Yang Wang\*, Timothy R Walsh, Ling-Xian Yi, Rong Zhang, James Spencer, Yohei Doi, Guobao Tian, Baolei Dong, Xianhui Huang, Lin-Feng Yu, Danxia Gu, Hongwei Ren, Xiaojie Chen, Luchao Lv, Dandan He, Hongwei Zhou, Zisen Liang, Jian-Hua Liu, Jianzhong Shen

### Lancet Infect Dis 2016; 16: 161–68

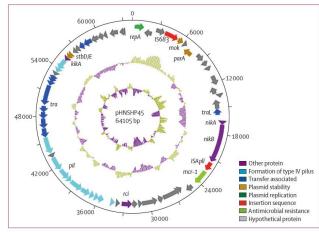
Published Online November 18, 2015 http://dx.doi.org/10.1016/ S1473-3099(15)00424-7



Figure 1: Map of China

|                                                                 | Year | Positive isolates (%)/number of isolates |  |  |
|-----------------------------------------------------------------|------|------------------------------------------|--|--|
| Escherichia coli                                                |      |                                          |  |  |
| Pigs at slaughter                                               | All  | 166 (20.6%)/804                          |  |  |
| Pigs at slaughter                                               | 2012 | 31 (14·4%)/216                           |  |  |
| Pigs at slaughter                                               | 2013 | 68 (25.4%)/268                           |  |  |
| Pigs at slaughter                                               | 2014 | 67 (20.9%)/320                           |  |  |
| Retail meat                                                     | All  | 78 (14.9%)/523                           |  |  |
| Chicken                                                         | 2011 | 10 (4.9%)/206                            |  |  |
| Pork                                                            | 2011 | 3 (6.3%)/48                              |  |  |
| Chicken                                                         | 2013 | 4 (25.0%)/16                             |  |  |
| Pork                                                            | 2013 | 11 (22.9%)/48                            |  |  |
| Chicken                                                         | 2014 | 21 (28.0%)/75                            |  |  |
| Pork                                                            | 2014 | 29 (22.3%)/130                           |  |  |
| Inpatient                                                       | 2014 | 13 (1.4%)/902                            |  |  |
| Klebsiella pneumoniae                                           |      |                                          |  |  |
| Inpatient                                                       | 2014 | 3 (0.7%)/420                             |  |  |
| Table 2: Prevalence of colistin resistance gene mcr-1 by origin |      |                                          |  |  |

### Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study


Yi-Yun Liu\*, Yang Wang\*, Timothy R Walsh, Ling-Xian Yi, Rong Zhang, James Spencer, Yohei Doi, Guobao Tian, Baolei Dong, Xianhui Huang, Lin-Feng Yu, Danxia Gu, Hongwei Ren, Xiaojie Chen, Luchao Lv, Dandan He, Hongwei Zhou, Zisen Liang, Jian-Hua Liu, Jianzhong Shen

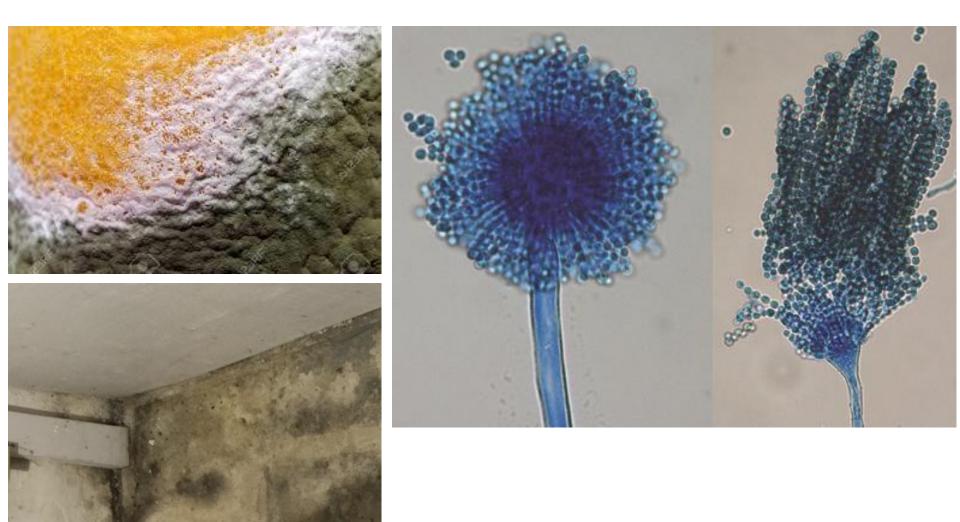
### Lancet Infect Dis 2016; 16: 161–68

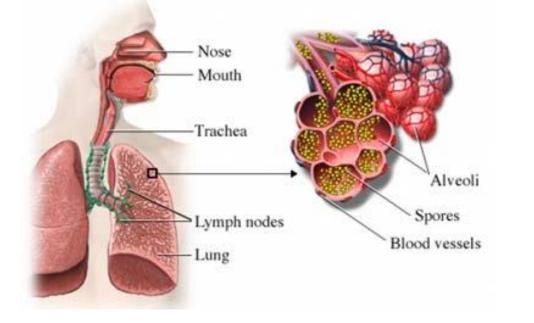
Published Online November 18, 2015 http://dx.doi.org/10.1016/ S1473-3099(15)00424-7

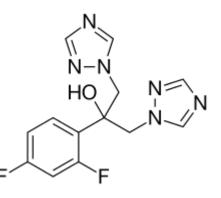



Figure 1: Map of China



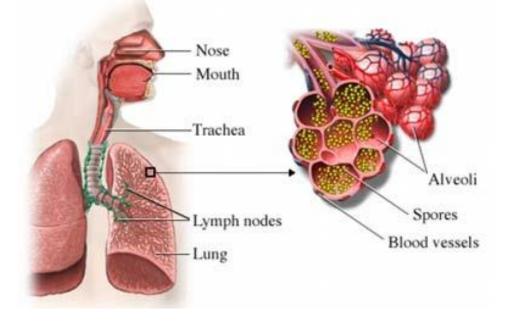

|                                                                 | Year | Positive isolates (%)/number of isolates |  |  |
|-----------------------------------------------------------------|------|------------------------------------------|--|--|
| Escherichia coli                                                |      |                                          |  |  |
| Pigs at slaughter                                               | All  | 166 (20.6%)/804                          |  |  |
| Pigs at slaughter                                               | 2012 | 31 (14·4%)/216                           |  |  |
| Pigs at slaughter                                               | 2013 | 68 (25·4%)/268                           |  |  |
| Pigs at slaughter                                               | 2014 | 67 (20.9%)/320                           |  |  |
| Retail meat                                                     | All  | 78 (14.9%)/523                           |  |  |
| Chicken                                                         | 2011 | 10 (4.9%)/206                            |  |  |
| Pork                                                            | 2011 | 3 (6.3%)/48                              |  |  |
| Chicken                                                         | 2013 | 4 (25.0%)/16                             |  |  |
| Pork                                                            | 2013 | 11 (22.9%)/48                            |  |  |
| Chicken                                                         | 2014 | 21 (28.0%)/75                            |  |  |
| Pork                                                            | 2014 | 29 (22.3%)/130                           |  |  |
| Inpatient                                                       | 2014 | 13 (1.4%)/902                            |  |  |
| Klebsiella pneumoniae                                           |      |                                          |  |  |
| Inpatient                                                       | 2014 | 3 (0.7%)/420                             |  |  |
| Table 2: Prevalence of colistin resistance gene mcr-1 by origin |      |                                          |  |  |

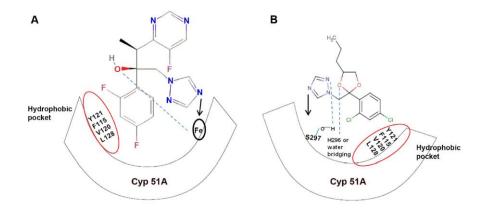

Figure 2: Structure of plasmid pHNSHP45 carrying mcr-1 from Escherichia coli strain SHP45

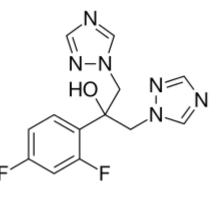

## CRE: Our last line of defense is breached



Liu YY et al. Lancet Infect Dis. 2016 Feb;16(2):161-8. Du H Lancet Infect Dis. 2016 Jan 29. Yao X et al. Lancet Infect Dis. 2016 Jan 29, <u>Bloomberg</u>. AAC 2016 May 26 online; doi:10.1128/AAC.01103-16



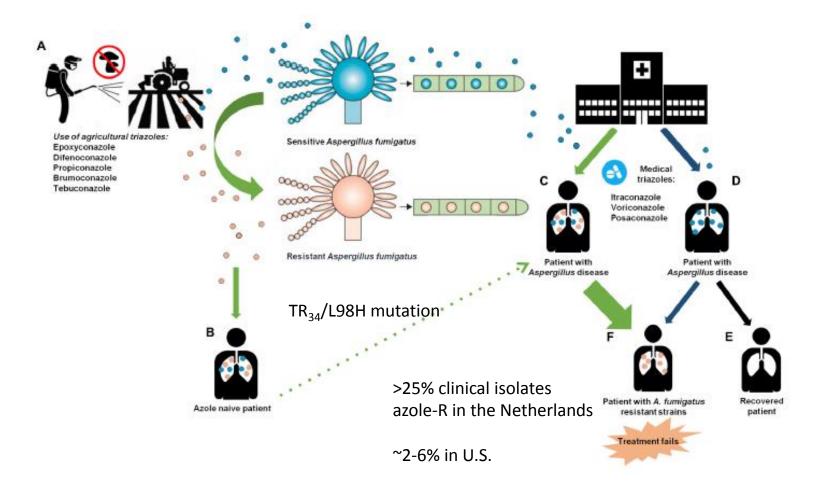




### Azole antifungals

**Chowdhary Plos Pathogens 2013** 



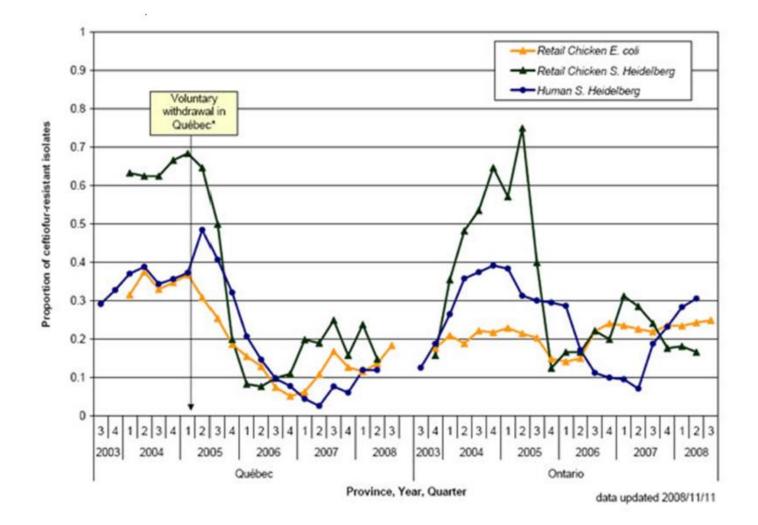





Azole antifungals

Crop protection, wood preservation, fruit and vegetable mildew and rust

Chowdhary Plos Pathogens 2013




## Case Study 3: AMS in the poultry industry

- Ceftiofur was administered to eggs or day-old hatchery chicks as prophylaxis against *E. coli* or egg yolk infections
  - Canadian Integrated Program for Antimicrobial Resistance Surveillance
    - High rates of ceftiofur resistant Salmonellla
    - Ceftriaxone cross-resistance

McEwen, Microbiol Spectrum 2017; CPIARS 2009

## Case Study 3: AMS in the poultry industry



## Case Study 3: AMS in the poultry industry

- Japan, 2012
  - Voluntary withdrawal of ceftiofur use in hatcheries
    - Decrease in cephalosporin-R *E. coli* in broilers
- Canada, 2014
  - Ceftiofur voluntary ban by Canadian poultry industry <u>http://www.chickenfarms.ca/wjat-we-do/antibiotics/faq/</u>
- Europe
  - Label claim for ceftiofur use in day-old chicks withdrawn
- U.S.
  - Off-label use of 3<sup>rd</sup> generation cephalosporin banned

- Drug classification
  - Limit use of medically important antibiotics

TABLE 1 Classification of importance of antimicrobial classes for human health and animal health

| Category             | Human health (WHO) ( <u>42</u> )                                                                                                                                                                                                                                                                                                                                                                                                  | Animal health (OIE) ( <u>162</u> )                                                                                                                                                                                                                                                   |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Critically important | Aminoglycosides<br>Ansamycins<br>Carbapenems and other penems<br>Cephalosporins (3rd and 4th generation)<br>Phosphonic acid derivatives<br>Glycopeptides<br>Glycylcyclines<br>Lipopeptides<br>Macrolides and ketolides<br>Monobactams<br>Oxazolidinones<br>Penicillins (natural, aminopenicillins, and antipseudomonal)<br>Polymyxins<br>Quinolones<br>Drugs used solely to treat tuberculosis or<br>other mycobacterial diseases | Aminoglycosides<br>Amphenicols<br>Cephalosporins (3rd and 4th generation)<br>Macrolides<br>Penicillins (natural, aminopenicillins, aminopenicillins<br>with beta-lactamase inhibitor, antistaphylococcal)<br>Fluoroquinolones<br>Sulfonamides<br>Diaminopyrimidines<br>Tetracyclines |
| Highly important     | Amidinopenicillins<br>Amphenicols<br>Cephalosporins (1st and 2nd generation) and cephamycins<br>Lincosamides<br>Penicillins (antistaphylococcal)<br>Pleuromutilins<br>Pseudomonic acids<br>Riminofenazines<br>Steroid antibacterials<br>Streptogramins<br>Suffonamides, dihydrofolate reductase inhibitors,<br>and combinations<br>Tetracyclines                                                                                  | Ansamycin—rifamycins<br>Cephalosporins (1st and 2nd generation)<br>Ionophores<br>Lincosamides<br>Phosphonic acid<br>Pleuromutilins<br>Polymyxins (including bacitracin and other polypeptide<br>1st-generation quinolones (flumequin, miloxacin,<br>nalidixic acid, oxolinic acid)   |
| Important            | Aminocyclitols<br>Cyclic polypeptides<br>Nitrofurantoins<br>Nitroimidazoles                                                                                                                                                                                                                                                                                                                                                       | Aminocoumarin<br>Arsenical<br>Bicyclomycin<br>Fusidic acid<br>Orthosomycins<br>Ouinoxalines<br>Streptogramins<br>Thiostrepton                                                                                                                                                        |

- AMS
  - Align medical, animal, agricultural activities
  - Regulatory
    - Antimicrobials in animal growth promotion
    - Extra-label fluoroquinolone, 3<sup>rd</sup> generation cephalosporin use in animals
    - Prescription-only antibiotics for veterinary use
- Surveillance and research
- Improved sanitation, hygiene and infection prevention
- New therapeutics, diagnostic tests, vaccines

- Communication, education, and training
  - Views on moral implications of antibiotic use
    - Physicians, Veterinarians
      - Limit inappropriate use and resistance ("do no harm")
    - Poultry industry leaders
      - Responsibility to business and employees
  - Interviews with farmers in India indicated that antibiotics are viewed as vitamins and feed supplements

- Communication, education, and training
  - Views on moral implications of antibiotic use
    - Physicians, Veterinarians
      - Limit inappropriate use and resistance ("do no harm")
    - Poultry industry leaders
      - Responsibility to business and employees
  - Interviews with farmers in India indicated that antibiotics are viewed as vitamins and feed supplements
- Human medicine needs to get its own house in order

## Acknowledgments

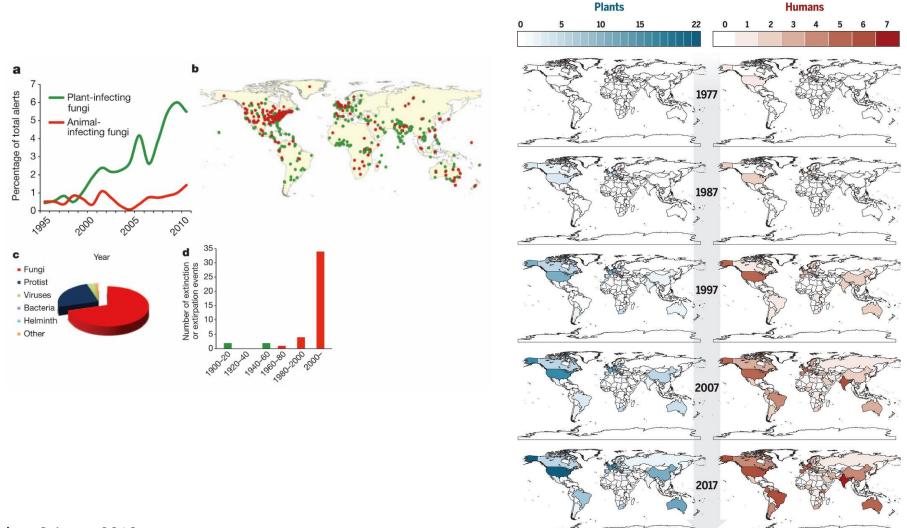
### UPMC AMS and XDR Pathogen Lab VAPHS AMS

### **UPMC AMS**

- M. Hong Nguyen MD (Director)
- Ryan Bariola MD (System AMS)
- Brian Potoski PharmD,
- Ryan Shields PharmD
- Erin McCreary PharmD, Rachel Marini PharmD, Tina Khadem PharmD, Greg Eschenauer PharmD, Bonnie Falcione PharmD, Ryan Rivosecchi Pharm D
- Ghady Haidar MD, EJ Kwak MD, Alex Viehman MD
- Lloyd Clarke, Diana Pakstis, Ellen Press

### **UPMC XDR Pathogen Lab**

Binghua Hao PhD, Shaoji Cheng PhD


### VAPHS AMS

- Brooke Decker MD (Director)
- Deanna Buehrle PharmD
- Jae Hong, MD





# Worldwide emergence of fungal disease and antifungal-R



Fisher, Science 2018